高级氧化设备技术公司logo

应用领域新浪微博

高级氧化设备定制热线

您所在的位置:首页 > 光化学氧化法 > 光催化的原理和催化剂的种类

光催化的原理和催化剂的种类

发布时间:2019-01-24 14:04  文章来源:www.gaojiyanghua.com  文章作者:高级氧化技术工程

  在可再生能源中,太阳能来源丰富,且能量巨大,其优点是其它能源所不可比拟的。地球每年接收的太阳辐照的能量大约是5.4×1024焦耳,是取之不尽用之不竭的。太阳能相对于核能更安全;并且利用太阳能所需的成本较水能、风能相比低,太阳能不像水能、风能一样受地理条件的限制。全世界范围每年消耗的能量为1.09×1020焦耳,相当于8×109吨煤,能源问题有待解决。如果太阳能可以加以利用的话,只需辐照地球上一小部分的太阳能,就可以轻松解决许多能源问题。

  光催化PHOTOCATALYSIS是光 Photo=Light + 触媒(催化剂)Catalyst的合成词。光催化剂在光的照射下,自身不发生任何变化,却可以促进化学反应的进行,光触媒利用了自然界存在的光能,将光能转换成为化学反应所需的能量,来产生催化作用,使周围的氧气及水分子激发成极具氧化力的自由负离子。借助光催化,可以分解几乎所有对人体和环境有害的有机物质及部分无机物质,不仅能加速反应,亦能运用自然界的定侓,不造成资源浪费与附加污染形成。代表性的例子为植物的"光合作用",像植物一样可以吸收对动物有毒之二氧化碳,利用光能将其转化为氧气及水。


光化学氧化法

  光催化的原理

  半导体的能带结构通常是由1个充满电子的低能价带(valent band,VB)和1个空的高能导带(conduction band,CB)构成,价带和导带之间的区域称为禁带,区域的大小称为禁带宽度。半导体的禁带宽度是1个不连续区域,一般为0.2-3.0eV。

  半导体的特殊能带结构决定了光催化性能。当用能量等于或大于半导体带隙能的光波辐射半导体光催化剂时,处于价带上的电子(e-)就会被激发到导带上并在电场作用下迁移到粒子表面,于是在价带上形成了空穴(h+),从而产生了具有高度活性的空穴-电子对。光致空穴具有强氧化性,不仅在水中形成还原电位都比臭氧正的·OH,还可以直接催化氧化有机污染物,被光激发产生的光生电子具有强还原性,可以把氧分子还原成(·O2-),水分子歧化为H2O2,这是传统的技术所不具备的。

  光催化剂的种类

  在世界上,可以用作光催化剂的材料有很多,包括二氧化钛(TiO2),氧化锌(ZnO),氧化锡(SnO2),二氧化锆(ZrO2),硫化镉(CdS)等多种氧化物和硫化物的半导体,其中二氧化钛(Titanium Dioxide)具有氧化能力超强,化学性质稳定并且无毒的优点,所以二氧化钛成为推举的纳米光触媒材料。并且二氧化钛具有抗光腐蚀性能,且二氧化钛的光匹配性能好,从而较为适合光解水。在早期,也曾经出现较多使用硫化镉(CdS)和氧化锌(ZnO)作为光催化剂,但是由于这硫化镉和氧化锌的化学性质并不稳定,在光催化的同时有可能发生光溶解,并且溶出的有害金属离子具有一定的生物毒性,而且ZnO在部分溶解后生成的Zn(OH)2有可能覆盖在ZnO颗粒表面,使氧化锌部分失活。故发达国家目前已经很少将它们用作为民用光催化材料,只有部分工业光催化领域还在使用。

  德兰梅勒专业提供电化学高级氧化技术、湿式氧化技术、光催化氧化技术、臭氧催化氧化技术、UV联合工艺氧化技术、高级生物氧化技术,技术广泛应用于工业有机废水处理、抗生素制药废水、含氰废水处理及其他水处理除氧工艺流程的应用。

相关文章

>> 产品推荐

Fenton氧化法的各种实施因素
Fenton氧化法的
湿式氧化技术应用于废水处理
湿式氧化技术
臭氧高级氧化法主要用途及使用优点
臭氧高级氧化
电化学催化氧化法处理酚类物质
电化学催化氧
Fenton氧化法处理工艺和对象
Fenton氧化法处